Archivi categoria: tau

Con i PIP (Proton Imploved Plan) nuova produzione di neutrini

Immagine
Con i PIP (Proton Imploved Plan) nuova produzione di neutrini

La divisione neutrino è  di casa per gli scienziati del Fermilab e per il personale e gli utenti provenienti da istituzioni accademiche di tutto il mondo, che si occupano di funzionamento e di esperimenti sui neutrini, di analisi e progettazione di nuove ricerche.

La missione

  • Ospitare un programma leader mondiale di esperimenti sui neutrini
    • Far funzionare il programma in corso: Nova,

      Una parte della struttura del NOVA

    • MicroBooNE,
    • Minerva

      Raffronta i neutrini con cinque tipi diversi di atomi

      , MINOS +,

      Per cercare di spiegare una parte dei misteri del sapore dei neutrini

    • Lariat
    • Coordinare ed eseguire un nuovo programma internazionale di esperimenti sui neutrini a breve e lungo basali
  • Fornire supporto alla comunità di utenti neutrino di partecipare a tutti gli aspetti di questo programma
    • Variare le competenze tecniche nella progettazione, direzione lavori, le operazioni, ecc per organizzare uffici e spazi di incontro

Lo studio dei neutrini

Le particelle subatomiche chiamate neutrini sono tra i più sfuggenti nel particolare regno delle particelle. Gli scienziati hanno costruito rivelatori sotterranei, sottomarini, e al Polo Sud per misurare queste particelle spettrali che provengono dal Sole, da Supernovae e da molti altri oggetti celesti.

I neutrini riempire l’intero universo, con circa 10 milioni di loro per 28,32 dm 3, e la maggior parte di loro passa direttamente attraverso la terra, e attraverso rivelatori di particelle, senza lasciare traccia. Quasi mai interagiscono con la materia, solo esperimenti massicci e sofisticati possono catturare e misurare le proprietà dei neutrini.

Oltre a misurare i neutrini dal cielo, i fisici sulla Terra usando potenti acceleratori  producono fasci di neutrini contenenti miliardi di neutrini, di cui una frazione molto piccola può essere misurata da rilevatori disposti in linea di fascio. Al Fermilab, l’esperimento di neutrini a base di acceleratore disposto a forma di Ciambella ha portato nel 2000 alla scoperta del neutrino tau , il terzo dei tre tipi noti di neutrini.

Il Numi linea di luce ed il Booster Neutrino linea

Una parte del complesso meccamismo del Booster

di luce garantiscono fasci di neutrini ad alta intensità per esperimenti del Fermilab, come MINOS + e Minerva

Raffronta i neutribni con cinque tipi diversi di atomi

, e due nuovi esperimenti sui neutrini MicroBooNE e Nova .

L’importanza dei neutrini

  • La fisica delle particelle ha fatto grandi progressi nell’ultimo mezzo secolo sondando la metà  con la modalità quark (una qualsiasi delle particelle subatomiche che trasportano una carica elettrica frazionata, postulata come elementi costitutivi degli adroni. I quark non sono stati osservati direttamente, ma le previsioni teoriche basate sulla loro esistenza sono state confermate sperimentalmente) delle particelle fondamentali. Ora si propone un meccanismo simile per i neutrini. La miscelazione tra le 3 generazioni di neutrini sta cominciando a sembrare molto diverso alla sua controparte quark. Non sappiamo perché, ma probabilmente è importante. I neutrini potrebbe essere la chiave per comprendere il motivo per cui le particelle fondamentali esistono in 3 generazioni.
  • I neutrini sono le vere stranezze delle particelle fondamentali ( non solo interagiscono debolmente, sono ultra piccoli, ma hanno masse non-zero). La scienza avanza spesso quando si studia le stranezze ( per esempio Comprensione dei processi di vita in generale, studiando la vita attorno ai fori di acque profonde)
  • I neutrini interagiscono solo debolmente può, ma sono la particella più abbondante nell’universo con un ruolo fondamentale nell’evoluzione del nostro universo
  • Una differenza tra come i tipi di neutrini si mescolano e come il mix di tipi antineutrini si ritiene che siano la ragione per cui la materia domina anti-materia nel nostro universo (cioè perché esiste il mondo sulla Terra come lo conosciamo)

MINERvA è il primo esperimento del neutrino nel mondo ad usare un fascio ad alta intensità per studiare le reazioni dei neutrini con cinque nuclei differenti, creando il primo confronto autonomo delle interazioni in diversi elementi. Mentre questo tipo di studio è stato precedentemente fatto utilizzando fasci di elettroni, questo è il primo per i neutrini.MINERvA fornisce le migliori misure di precisione a livello mondiale di interazioni neutrino su vari nuclei, nell’ambito della gamma di energia da 1 a 10-GeV. I risultati di MINERvA vengono usati come input per gli esperimenti attuali e futuri, cercando di studiare oscillazioni al neutrino o la capacità dei neutrini di cambiare il loro tipo.Le misurazioni dell’interazione di neutrino di MINERvA forniscono anche informazioni sulla struttura dei protoni e dei neutroni e sulle dinamiche forti della forza che influenzano le interazioni del neutrino nucleone. Questa ricerca nucleare completa gli sforzi in corso in laboratori che stanno studiando come gli elettroni interagiscono con i nuclei.MINERvA è unica nel campo degli esperimenti di neutrino, grazie alla combinazione del suo compatto rivelatore, all’utilizzo di uno dei fasci neutrini ad alta intensità del mondo e alla vicinanza del rivelatore al fascio. Questo meccanismo fornisce un ampio campione di interazioni di neutrino, consentendo alla collaborazione di eseguire misure di interazione di elevata precisione in una vasta gamma di energie a neutrino e di materiali target.La comprensione delle proprietà dei neutrini e delle forze che regolano il loro comportamento permettono ai fisici di utilizzarli come strumenti per comprendere i nucleoni di funzionamento interiore e per potenzialmente aiutare a sbloccare i misteri della materia oscura, dell’energia oscura e  su come la materia ha dominato l’antimateria nell’universo, la formazione di pianeti e persone.

Il MINOS

Per cercare di spiegare una parte dei misteri del sapore dei neutrini

(Main Injector Nuetrino Oscillation Search) spedisce un raggio di neutrini dal Fermilab, in superficie, fino ad una lontana miniera nel nord della Minnesota, chiamata Soudan mine. Esattamente come OPERA al CERN, il motivo della ricerca è quello di scoprire qualcosa in più riguardo ai cambiamenti di sapore dei neutrini (in fisica quantistica il sapore è un numero quantico delle particelle elementari correlato alle loro interazioni deboli). Ma può essere usato anche per misurare con incredibile precisione la velocità delle particelle che percorrono questa distanza.Quello che cercherà di fare il team di MINOS sarà replicare i loro risultati usando un sistema GPS più sofisticato e più orologi atomici, oltre a luci LED per rilevare il raggio di neutrini. Questi aggiornamenti sono già in fase di allestimento secondo i fisici di “Symmetry Breaking”, un blog pubblicato dal Fermilab e dal SLAC National Accelerator Laboratory.

NOVA

L’esperimento di oscillazione neutrino basata su base Fermilab.
L’esperimento di NOvA è l’esperimento di Fermilab per l’oscillazione di neutrino, utilizzando un fascio intenso di neutrini muoni  prodotti a Fermilab. I neutrini sono diretti al rilevatore lontano da 14 kton liquido-scintillatori situato a 810 km di distanza nel Minnesota settentrionale (fiume di cenere) dopo aver attraversato i 300 ton presso il rivelatore vicino all’origine del fascio. Il rivelatore lontano è stato completato all’inizio del 2014 e attualmente sta prendendo dati. NOvA tenterà di scoprire la gerarchia di massa del neutrino e l’angolo di fase violente CP insieme a molte altre misurazioni interessanti. La prima esecuzione di NOvA dovrebbe durare 6 anni.
Il contributo del gruppo CSU si concentrerà sul funzionamento del rilevatore vicino, nonché sulle misurazioni effettuate con questo rilevatore. Matt Judah spenderà l’estate al laboratorio per sviluppare le competenze in operazioni e manutenzione vicino al rilevatore, mentre inizierà l’analisi dei dati.

PIP-II

Il progetto PIP II

Parte dello schema del Pip II

consentirà un grande aumento del potere die fasci di protoni del Fermilab. Questo, a sua volta produrrà più potenti fasci di neutrini.

Con l’esperimento neutrino NOVA  è stato osservato il primo antineutrino, solo due ore dopo il complesso acceleratore del Fermilab ha saputo commutare l’antineutrino, in modalità di consegna. La collaborazione Nova ha visto la produzione dell’antineutrino nel rivelatore di gran lunga più lontano dell’esperimento, che si trova nel nord del Minnesota. Si  spera su Nova per saperne di più su come e perché il cambiamento neutrini tra un tipo e l’altro. I tre tipi, chiamati sapori, sono il muone, elettrone e neutrino tau. Sulle lunghe distanze, i neutrini possono cambiare fra questi sapori. Nova è stato  specificamente progettato per studiare i neutrini muonici  che cambiano in neutrini elettronici. Svelare il mistero può aiutare gli scienziati a capire il motivo per cui l’universo è composto di materia e perché che la materia non è stato annientato dalla antimateria dopo il Big Bang.

Annunci